Abstract
AbstractIf basic quaternary logic circuits with low‐power consumption are designed in a simple way, they will be useful for high‐density VLSI implementations utilizing the feature of multivalued logic. This paper proposes a new low‐power quaternary CMOS logic circuit, which can be fabricated by a multilevel ion implant technique. The basic circuits realize functions defined by “([A‐Z]+)” and “([A‐Z]+)” operators. The circuit has two features which have not been observed so far. One is that the threshold detection of a multilevel input voltage can easily be realized by a multilevel ion implant technique. The other is that the design can be extended to any multivalued logic circuits, preserving the low‐power property, since CMOS analog switches are used for multiplexing the multivalued signals. Through the discussion of the mathematical properties of the basic operators, any combinational logic circuit can be synthesized in a very simple and systematic way. Finally, examples of the network synthesis are shown, and the operations are verified by the electronic circuit analysis program SPICE2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.