Abstract

The multiple constant multiplications (MCM) operation, which realizes the multiplication of a set of constants by a variable, has a significant impact on the complexity and performance of the digital finite impulse response (FIR) filters. Over the years, many high-level algorithms and design methods have been proposed for the efficient implementation of the MCM operation using only addition, subtraction, and shift operations. The main contribution of this paper is the introduction of a high-level synthesis algorithm that optimizes the area of the MCM operation and, consequently, of the FIR filter design, on field programmable gate arrays (FPGAs) by taking into account the implementation cost of each addition and subtraction operation in terms of the number of fundamental building blocks of FPGAs. It is observed from the experimental results that the solutions of the proposed algorithm yield less complex FIR filters on FPGAs with respect to those whose MCM part is implemented using prominent MCM algorithms and design methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.