Abstract

Along with advantages in higher data rates, spectrum contention, and security, free space optical communications can provide size, weight, and power (SWaP) advantages over radio frequency (RF) systems. SWaP is always an issue in space systems and can be critical in applying free space optical communications to small satellite platforms. The system design of small space-based free space optical terminals with Gbps data rates is addressed. System architectures and requirements are defined to ensure the terminals are capable of acquisition, establishment and maintenance of a free space optical communications link. Design trades, identification of blocking technologies, and performance analyses are used to evaluate the practical limitations to terminal SWaP. Small terminal design concepts are developed to establish their practicality and feasibility. Techniques, such as modulation formats and capacity approaching encoding, are considered to mitigate the disadvantages brought by SWaP limitations, and performance as a function of SWaP is evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call