Abstract

Airfoils tested at low speeds generally produce surface pressure distributions that differ substantially from those measured at transonic conditions, which in turn results in very different boundary-layer characteristics even for the same Reynolds number. A methodology is presented for mapping transonic pressure gradients to an equivalent low-speed airfoil. It is applied to the design of a low-speed, slotted, natural-laminar-flow (SNLF) airfoil intended to emulate the pressure gradients of a SNLF airfoil designed for a transonic commercial transport with a Reynolds number of 13.2 million. The on-design cruise operating condition of the original airfoil was chosen as the reference condition; however, the design lift coefficient of the new airfoil was lowered to account for both compressibility effects and suitability for low-speed wind-tunnel testing. The overall design process mirrors the development of the transonic airfoil by beginning with a single-element airfoil and then modifying it to include an aft element. An inverse design method based on conformal mapping was developed and employed to determine the necessary geometry of the low-speed single-element airfoil. Analysis of the new SNLF airfoil confirms that the design objectives were met, and the airfoil is found to be well behaved down to a Reynolds number of 1 million.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.