Abstract

In this work, we mainly focus on low probability detection (LPD) and low probability interception (LPI) wireless communication in cyber-physical systems. An LPD signal waveform based on multi-carrier modulation and an under-sampling method for signal detection is introduced. The application of the proposed LPD signal for physical layer security is discussed in a typical wireless-tap channel model, which consists of a transmitter (Alice), an intended receiver (Bob), and an eavesdropper (Eve). Since the under-sampling method at Bob’s end depends very sensitively on accurate sampling clock and channel state information (CSI), which can hardly be obtained by Eve, the security transmission is initialized as Bob transmits a pilot for Alice to perform channel sounding and clock synchronization by invoking the channel reciprocal principle. Then, Alice sends a multi-carrier information-bearing signal constructed according to Bob’s actual sampling clock and the CSI between the two. Consequently, Bob can coherently combine the sub-band signals after sampling, while Eve can only obtain a destructive combination. Finally, we derived the closed-form expressions of detection probability at Bob’s and Eve’s ends when the energy detector is employed. Simulation results show that the bit error rate (BER) at Alice’s end is gradually decreased with the increase in the signal-to-noise ratio (SNR) in both the AWGN and fading channels. Meanwhile, the BER at Eve’s end is always unacceptably high no matter how the SNR changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call