Abstract

A 402-MHz fully differential RF front-end was designed and implemented using 0.13 μm CMOS process. This design was targeted for low-power and low-cost direct conversion applications such as short-range radio in biomedical devices. This RF front-end consists of a differential CG-CS LNA with a positiveor negative-feedback technique and a frequency doubler subharmonic quadrature passive mixer. The subharmonic conversion passive mixer driven by current input signals (from a transconductor) and loaded with low impedance is implemented to minimize the LO self-mixing dc-offset and introduces a high linearity. The front-end was implemented on a 0.13 μm CMOS process and occupies 380μm × 330 μm active chip area, which is approximately 50% of that of the conventional front-end. The RF front-end achieves 31 dB conversion gain, 13.6 dB noise figure (NF) and an in-band IIP3 of 3 dBm. The design consumes 2.25 mA from a 1.2 V power supply.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.