Abstract
It is well known that multipliers consume most of the power in DSP computations. Hence, it is very important for modern DSP systems to develop low-power multipliers to reduce the power dissipation. In this paper, we presents low power Column bypass multiplier design methodology that inserts more number of zeros in the multiplicand thereby reducing the number of switching activities as well as power consumption. The switching activity of the component used in the design depends on the input bit coefficient. This means if the input bit coefficient is zero, corresponding row or column of adders need not be activated. If multiplicand contains more zeros, higher power reduction can be achieved. To reduce the switching activity is to shut down the idle part of the circuit, which is not in operating condition. Use of look up table is an added feature to this design. Further low power adder structure reduces the switching activity. Flexibility is another critical requirement that mandates the use of programmable components like FPGAs in such devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.