Abstract

We present a 320 × 240 CMOS image sensor (CIS) using the proposed hybrid-correlated multiple sampling (HMS) technique with an adaptive dual-gain analog-to-digital converter (ADC). The proposed HMS improves the noise characteristics under low illumination by adjusting the ADC gain according to the incident light on the pixels. Depending on whether it is less than or greater than 1/4 of the full output voltage range from pixels, either correlated multiple sampling or conventional-correlated double sampling (CDS) is used with different slopes of the ramping signals. The proposed CIS achieves 11-bit resolution of the ADC using an up-down counter that controls the LSB depending on the ramping signals used. The sensor was fabricated using a 0.11 μm CIS process, and the total chip area was 2.55 mm × 4.3 mm. Compared to the conventional CDS, the measurement results showed that the maximum dark random noise was reduced by 26.7% with the proposed HMS, and the maximum figure of merit was improved by 49.1%. The total power consumption was 5.1 mW at 19 frames per second with analog, pixel, and digital supply voltages of 3.3 V, 3.3 V, and 1.5 V, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.