Abstract

Lead zirconate titanate (PZT)/polymer 1-3 composites have improved electromechanical properties compared with monolithic counterparts, but possess a low mechanical quality factor, limiting their use in high-power transducer applications. The goal of this work was to improve the mechanical quality factor of 1-3 PZT/polymer composites by optimizing the polymer materials. Theoretical analysis and modeling were performed for optimum composite design and various polymers were prepared and characterized. 1-3 piezocomposites were constructed and their electromechanical properties were experimentally determined. The results demonstrated that the composites with high-thermal-conductivity polymers generally have degraded electromechanical properties with significantly decreased mechanical quality factors, whereas the composites filled with low-loss and low-moduli polymers were found to have higher mechanical quality factors with higher electromechanical coupling factors: Q(m) ~ 200 and k(t) ~ 0.68 for PZT4 composites; Q(m) ~ 400 and k(t) ~ 0.6 for PZT8 composites. The improved mechanical quality factor of 1-3 piezocomposites may offer improved performance and thermal stability of transducers under high-drive operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.