Abstract
AbstractWeak response in long‐wavelength infrared (LWIR) detection has long been a perennial concern, significantly limiting the reliability of applications. Avalanche photodetectors (APDs) offer excellent responsivity but are plagued by high dark current during the multiplication process. Here, we propose a high‐performance type‐II superlattices (T2SLs) LWIR APD to address these issues. The low Auger recombination rate of the InAs/InAsSb T2SLs absorption layer is exploited to reduce the dark current initially. AlAsSb with a low k value is employed as the multiplication layer to suppress device noise while maintaining sufficient gain. To facilitate carrier transport, the conduction band discontinuity is optimized by inserting an InAs/AlSb T2SLs stepped grading layer between the absorption and multiplication layers. As a result, the device exhibits excellent photoresponse at 8.4 μm at 100 K and maintains a low dark current density of 5.48 × 10−2 A/cm2. Specifically, it achieves a maximum gain of 366, a responsivity of 650 A/W, and a quantum efficiency of 26.28% under breakdown voltage. This design offers a promising solution for the advancement of LWIR detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.