Abstract

Quasicrystals (materials with long-range order but without the usual spatial periodicity of crystals) were discovered in several soft matter systems in the last 20 years. The stability of quasicrystals has been attributed to the presence of two prominent length scales in a specific ratio, which is 1.93 for the 12-fold quasicrystals most commonly found in soft matter. We propose design criteria for block copolymers such that quasicrystal-friendly length scales emerge at the point of phase separation from a melt, basing our calculations on the Random Phase Approximation. We consider two block copolymer families: linear chains containing two different monomer types in blocks of different lengths, and ABC star terpolymers. In all examples, we are able to identify parameter windows with the two length scales having a ratio of 1.93. The models that we consider that are simplest for polymer synthesis are, first, a monodisperse ALBASB melt and, second, a model based on random reactions from a mixture of AL, AS, and B chains: both feature the length scale ratio of 1.93 and should be relatively easy to synthesize.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.