Abstract

In this paper, low sidelobe radiation pattern (i.e., pencil-beam pattern) synthesis problem is formulated for symmetric linear antenna arrays. Different array parameters (feed current amplitudes, feed current phase, and array elements positions) are considered as the optimizing variables. The newly proposed evolutionary algorithm, Symbiotic Organisms Search (SOS), is employed to solve such a pattern optimization problem. The design objective is to obtain radiation patterns with very low interference in the entire sidelobes region. In this context, SOS is used to minimize the maximum sidelobe level (SLL) and impose nulls at specific angles for isotropic linear antenna arrays by optimizing different array parameters (position, amplitude, and phase). The obtained results show the effectiveness of SOS algorithm compared to other well-known optimization methods, like Particle Swarm Optimization (PSO), Biogeography-based optimization (BBO), Genetic Algorithm (GA), Firefly Algorithm (FA), and Taguchi method. Unlike other optimization methods, SOS is free of tuning parameters; one just has to set the value of the population size and the number of iterations. Moreover, SOS is robust and is characterized by relatively fast convergence and ease of implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.