Abstract

Efficient thermal management is critical to increasing power density, improving reliability, and reducing the cost of automotive power electronics. In this paper, we present a heat exchanger design based on impinging jets (with 50%–50% mixture by volume of water-ethylene glycol as coolant) on the copper base plate with and without microfinned/enhanced surfaces, and a plastic fluid manifold. Finite-element analyses as well as computational fluid dynamics (CFD) modeling were utilized for the design. The performance of the jet-based heat exchanger is compared to the baseline channel-flow heat exchanger via CFD modeling. We also characterized the thermal performance of the channel-flow-based heat exchanger experimentally to validate the CFD predictions. CFD results indicate that the jet-based heat exchanger can provide up to 45% lower thermal resistance, 79% increase in power density, and 118% increase in specific power with respect to the baseline channel-flow heat exchanger. We also initiated experimental characterization of the reliability of jet impingement on a plain surface as well as on microfinned/enhanced surfaces. Results to date suggest that jet impingement does not degrade the thermal performance of the enhanced surfaces after six months of near-continuous impingement on the surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call