Abstract

Hybrid organic-inorganic halide perovskites solar cells have attracted extensive interest because of their outstanding properties, including an optimal band gap, high carrier mobility, and excellent optoelectronic merits. We study the electronic and crystal structural properties of hybrid organic-inorganic halide APbX3 (A = Cs, methylammonium (MA), formamidinium (FA), X = I, Br) perovskites using first-principles calculations based on density functional theory. We find that halide atoms and A-site cations strongly affect their structural and electronic properties. The radius of a halide atom and the size of an organic molecule determine their lattice parameters and bond length. A relatively large halide atom can increase the value of the lattice parameters (a and b). Meanwhile, the electronic properties (band gap & carrier effective mass) of the Pb-based hybrid halide APbX3 can be effectively modified by adopting appropriate A- and X-site atoms or organic sections. We predict that HOIPs may have outstanding potential in solar light harvesting with promoted power conversion efficiency due to a tunable band gap and excellent electronic properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call