Abstract

Efficient energy storage from intermittent renewables can rely on the conversion of temporary energy excess by alkaline electrolysis, yielding oxygen and green hydrogen, which can be stored and used on demand. Electrodes made of laser-induced graphene (LIG) materials offer many advantages over the traditional graphene processing routes, due to inherent simplicity and low cost-benefit. Despite poorly studied, LIG electrodes are promising for water splitting when properly doped/modified with metals. However, proper design and processing optimization should be considered. The present study is devoted to the laser processing effects on the LIG electrode performance towards water splitting in alkaline media. Promising guidelines were obtained for hydrogen production, showing high electrochemical activity, while the microstructural degradation can be minimised by selecting suitable laser processing conditions, such as 3.6 W of laser power, 100 mm/s of laser scan rate, 36 mJ/mm of energy density and 2 laser scans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call