Abstract

This paper presents the design methodology for a single-mobility, large surface-deployable mechanism using irregularly shaped triangular prismoid units. First, we demonstrate that the spherical shell, as the deployed profile of the large deployable mechanism, cannot be filled with identical regular-shaped triangular prismoids (truncated pyramid) without gaps, which makes the design challenging because a large set of nonidentical modules should be moved synchronously. Second, we discuss the design of a novel deployable mechanism that can be deployed onto irregularly shaped triangular prismoids, which will be used as the basic module to fill the spherical shell. Owing to high stiffness and ease of actuation, a planar scissor-shape deployable mechanism is applied. Third, we study the mobile assemblies of irregularly shaped modules in large surface-deployable mechanisms. We discover that hyper kinematic redundant constraints exist in a multiloop mechanism, making the design even more difficult. In order to address this issue, a methodology for reducing these redundant constraints is also discussed. Finally, a physical prototype is fabricated to demonstrate the feasibility of the proposed design methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.