Abstract
Recently, low-Earth orbit (LEO) satellite Internet of Things (IoT) has received considerable interests due to its global coverage for massive IoT devices distributed over a large area, especially in remote areas, e.g., ocean, desert, and forest. Considering relatively long transmission distance between IoT devices and LEO satellite, we propose a low latency and small overhead sourced grant-free random access (GF-RA) framework, where active devices send their data signals directly without the grant of LEO satellite. In order to detect active device and recover the corresponding data, we design a joint device and data detection algorithm for massive GF-RA in LEO satellite IoT. In particular, the active device maps the data to a codeword of a predetermined and unique codebook, and then sends it to the LEO satellite. By detecting the codeword via maximizing the likelihood function of the received signal, the LEO satellite obtains the active device and recovers the corresponding data. Theoretical analysis shows that the proposed algorithm has a fast convergence behavior and low computational complexity. Finally, we provide extensive simulation results to confirm the effectiveness of the proposed algorithm over baseline ones in LEO satellite IoT.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.