Abstract

We examined the formation mechanism of active sites on Cu/ZrO2 specific toward CO2-to-methanol hydrogenation. The active sites on Cu/a-ZrO2 (a-: amorphous) were more suitable for CO2-to-methanol hydrogenation than those on Cu/t-ZrO2 (t-: tetragonal) and Cu/m-ZrO2 (m-: monoclinic). When a-ZrO2 was impregnated with a Cu(NO3)2·3H2O solution and then calcined under air, most of the Cu species entered a-ZrO2, leading to the formation of a Cu–Zr mixed oxide (CuaZr1-aOb). The H2 reduction of the thus-formed CuaZr1-aOb led to the formation of Cu nanoparticles on a-ZrO2, which can be dedicated to CO2-to-methanol hydrogenation. We concluded that the selective synthesis of CuaZr1-aOb, especially amorphous CuaZr1-aOb, is a key feature of the catalyst preparation. The preparation conditions of the amorphous CuaZr1-aOb specific toward CO2-to-methanol hydrogenation is as follows: (i) Cu(NO3)2·3H2O/a-ZrO2 is calcined at low temperature (350 °C in this study) and (ii) the Cu loading is low (6 and 8 wt % in this study). Vi...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.