Abstract
As airborne particulate matter (PM) such as pathogens and ultrafine dust threaten the human health, air quality control technologies are becoming increasingly important. Herein, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) nanofibers with various fiber diameters and pore size distributions were prepared using various compositions of volatile (acetone) and less volatile N,N-dimethylformamide (DMF) solvent mixtures to design the optimum filtration media. Morphologies and molecular configurations were examined thoroughly with respect to the filtration performance. Among the various solvent compositions, the specimen prepared with the lowest DMF content (denoted as ePVdF-HFP55) showed the best filtration performance, with a filtration efficiency of 99.95% and a pressure drop of 29.0 mmH2O. The quality factor (QF) of ePVdF-HFP55 (0.0266 Pa−1) is superior to that achieved in electrospun nanofibrous media in previous works. In addition, the QF was further improved to 0.0276 Pa−1, with a remarkably reduced resistance of 14.45 mmH2O achieved by employing the layered nanofiber media with a PVdF-HFP top layer. Our work demonstrates that optimization of the inherently polarized nanofiber synthesis is a fruitful pathway to enhancing the filtration performance of air filter media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.