Abstract

In this paper, a new method for designing digital infinite impulse response filter with nearly linear-phase response is presented using fractional derivative constraints (FDC). The design problem is constructed as a phase optimization problem between the desired and designed phase response of a filter. In order to achieve the highly accurate passband (pb) response, phase response is fitted to desired response more precisely using FDC, due to which design problem becomes a multimodal error surface that is constructed from sum of passband error (ep) and stopband error (es). Optimal value of FDC is accomplished by minimizing the total error (er0) using improved swarm-based optimization technique, which is formulated by associating the scout bee mechanism of artificial bee colony algorithm with particle swarm optimization and termed as hybrid particle swarm optimization. The simulated results reflect that the improved response in passband along with better transition width is achieved using the proposed method. It is observed that about 90–99% of improvement in passband error can be achieved with 100% reduction in maximum passband ripple. However, slight reduction in stopband attenuation (As), in some cases, results within the permissible limit. The designed filters using this method are also stable toward finite word length effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.