Abstract

An in-flight fragment separator usually requires large acceptance and high momentum resolution to minimize the loss of a rare isotope beam of interest produced at a thin target, which is especially important when (238)U fission reactions in the energy of 200 MeV/u are used. The production target and beam dump are located in the pre-separator, where a beam power of up to 400 kW is dissipated. The area is surrounded by thick radiation shielding walls, which result in long drift spaces between adjacent magnetic components at various locations and an asymmetrical layout. Efforts have been made to minimize non-linear effects in the pre-separator beam optics with trials of different separator configurations and correction schemes using COSY Infinity and GICOSY. The main separator is configured to be mirror symmetric such that correction with hexapole and octupole coils can be more readily applied. The separator configuration was finalized to allow the facility design to proceed and the key components including superconducting magnets have been designed and prototyped. In addition, the separator design has been evaluated using LISE++ including a set of wedge degraders at dispersive focal planes to improve the yield and purity of selected isotope beam.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call