Abstract

This paper deals with the optimal design of a new synchronous motor particularly suitable for electric vehicles. The unique advantage of this motor is its possibility to realize field weakening at high speeds, which is the most important demand for such drives. The main design goal is to identify the dimensions of certain crucial regions of the machine in order to avoid saturation of the iron and to minimize the mass to volume ratio, while simultaneously maximizing the torque. The originality of the contribution is manifold: formulating the design problem in multiobjective terms, solving it by means of evolutionary computing, solving the associated direct problem based on a three-dimensional finite element analysis (3-D-FEA) field model, considering a reduced set of design variables by means of response surface method, referring to a real-life problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.