Abstract

A hybrid airfoil is a scaled model for generating a full-scale ice shape for icing wind tunnel tests. This is possible by matching full-scale properties such as the distributions of collection efficiency and heat transfer coefficient. Previous studies have used indirect methods using full-scale stagnation point location or tangent droplet trajectories. Therefore, these methods can cause a discrepancy between the full-scale and hybrid airfoil ice shapes under glaze ice conditions. To cope with the issue, this paper proposes a new approach to match the distributions of the full-scale collection efficiency and heat transfer coefficient on the leading edge, using a viscous turbulent computational fluid dynamics icing simulation. For computational efficiency, reduced-order modeling based optimization was used to match the distributions. The optimization process was applied to the glaze ice condition with a high liquid water content and temperature. The results indicate that matching the distribution of the heat transfer coefficient is recommended to minimize the error between full-scale and hybrid airfoil ice shapes for the glaze ice condition. Finally, a hybrid airfoil flap geometry, which can be applied to various angles of attack, was designed using the optimization design process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call