Abstract

Alkaline aqueous zinc-ion batteries possess a wider potential window than those in mildly acidic systems; they can achieve high energy density and are expected to become the next generation of energy storage devices. In this paper, a hollow porous P-NiCo2O4@Co3O4 nanoarray is obtained by ion etching and the calcination and phosphating of ZiF-67, which is directly grown on foam nickel substrate, as a precursor. It exhibits excellent performance as a cathode material for alkaline aqueous zinc-ion batteries. A high discharge specific capacity of 225.3 mAh g-1 is obtained at 1 A g-1 current density, and it remains 81.9% when the current density is increased to 10 A g-1. After one thousand cycles of charging and discharging at 3 A g-1 current density, the capacity retention rate is 88.8%. Even at an excellent power density of 25.5 kW kg-1, it maintains a high energy density of 304.5 Wh kg-1. It is a vital, promising high-power energy storage device for large-scale applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.