Abstract
The mechanical joining of dissimilar materials is a key technology in the automotive industry as it enables the realization of car bodies that incorporate multiple materials. However, it remains difficult to join materials such as aluminum alloy to high-strength/low-ductility materials such as advanced high-strength steel, hot-pressed steel, and carbon fiber reinforced plastic by using joining methods that are based on forming technology. The purpose of this study is to develop a new joining process, called “hole clinching,” for these material combinations. In the hole-clinching process, the ductile material is positioned uppermost and the brittle material—into which a hole is formed—is positioned below that. The upper sheet is indented into a die cavity through the hole in the lower sheet and spread so that the two sheets interlock geometrically. In this study, hole-clinching tools were designed based on the geometrical relationship between the forming volume and the joint strength. Finite element analysis and practical experiments were performed to verify the practicality of the hole-clinching process. The cross-sections of the hole-clinched joints formed in our experiments were in good agreement with the results of the finite element analysis. Then, a single-lap shear test was performed to evaluate the joint strength. The hole-clinched joints, regardless of the material combinations, provided a joint strength in excess of the desired 2.5kN. These results point to the applicability of the hole-clinching process to the joining of dissimilar materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.