Abstract

This paper presents a 5.8 GHz high-efficiency dual-polarized rectenna for microwave wireless power transmission. The rectenna consists of a 5.8 GHz dual-polarized receiving antenna and a 5.8 GHz class-F rectifier. A metallic probe is used to integrate the receiving antenna and the rectifier. The receiving antenna is a 2×2 microstrip array antenna and the metal ring loading technology is adopted to improve the rectenna’s impedance bandwidth and robustness. The metal probe instead of the conventional microwave connector and cable is utilized to realize the integration of receiving antenna and rectifier circuit, thus simplifying the structure and reducing the weight, loss and cost of the rectifier antenna. A prototype of the dual-polarized rectenna is fabricated and its rectifying efficiency is measured and compared with the linear-polarized rectenna with the same aperture area. The measured results show that the maximum conversion efficiency of the dual-polarized rectifying antenna reaches 76.8% under the optimum incident power density of 1.47 mW·cm−2. Compared to the linear-polarized rectenna, when the polarization direction of the incident wave varies from 0° to 90°, the conversion efficiency of the rectenna antenna is always above 62% with stable DC output and the rectenna antenna exhibits excellent all-polarization receiving rectification performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call