Abstract

This work investigated, for the first time, the potential of novel biomass derived carbon foam as a suitable and efficient electrocatalytic material (as cathode) for in-situ hydrogen peroxide (H2O2) production and its applicability in electro-Fenton (EF) approach for oxidizing organic pollutants. The carbon foam cathode was prepared by polymerization and carbonization of sucrose at high temperature. The as-prepared carbon foam consists of highly porous and extremely light structure with interconnected spherical cells. It exhibited excellent electrocatalytic properties such as high conductivity, relatively high redox current and several active-sites for producing oxidizing species, such as H2O2. This demonstrated good electrocatalytic activity for in-situ production of H2O2, achieving up to 7 mg L‒1 at 60 mA. When carbon foam cathode was used in EF approach, it contributed to achieving complete degradation and COD removal of 0.5 mM synthetic sulfanilamide solution within 4 h of treatment. The EF process with carbon foam cathode also showed complete degradation and high mineralization of sulfanilamide in different electrolytes and real water matrices with extreme stability and reusability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.