Abstract

In this paper, the high potential of varactor-based dynamic load modulation (DLM) techniques for wideband cellular applications is demonstrated. A systematic design procedure is proposed to ensure high-efficiency wideband performance. It incorporates harmonically tuned power amplifier (PA) concepts and tunable matching techniques in an integrated design. A DLM transmitter at 2.65 GHz with a peak output power of 6 W is designed using the proposed procedure. In order to investigate the wideband performance of the implemented demonstrator, WCDMA signals with scaled bandwidths are employed. The signal peak-to-average ratio is 7 dB and the same for all the experiments. For the 38.4-MHz signal, which has a corresponding channel bandwidth of > 40 MHz, an average power added-efficiency (PAE) of 44%, normalized mean square error (NMSE) of -35 dB, and adjacent channel leakage ratio (ACLR) of -43 dBc are measured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.