Abstract
As developed countries’ ability to control infectious diseases increases, it has become clear that genetic diseases are a major cause of disability, death, and human tragedy. Coronavirus has recently spread throughout the world, and the capacity to detect low concentrations and virus changes can help to prevent the sickness from spreading further. In this paper, a surface plasmon resonance sensor based on nanostructured thin films and graphene as a 2D material has been designed with high sensitivity and accuracy to identify DNA-based infectious diseases such as SARS-CoV-2. The transfer matrix method assesses the effects of different structural factors, including nanolayer thickness on the sensor’s performance. The results demonstrated that the sensor with the Kretschmann configuration has ultra-high sensitivity (192.19 deg/RIU) and a high figure of merit (634.68 RIU−1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.