Abstract

Spiral antenna sensors are commonly used in partial discharge (PD) ultra-high frequency (UHF) detection in gas-insulated switchgears (GISs). However, most of the existing UHF spiral antenna sensors are based on a rigid base and balun, such as FR-4. The safe built-in installation of antenna sensors requires the complex structural transformation of GISs. To solve this problem, a low-profile spiral antenna sensor is designed based on a polyimide (PI) flexible base, and its performance is optimized by improving the clearance ratio. The simulation and measurement results show that the profile height and diameter of the designed antenna sensor is 0.3 mm and 137 mm, which is 99.7% and 25.4% smaller than the traditional spiral antenna. Under a different bending radius, the antenna sensor can maintain VSWR ≤ 5 in 650 MHz~3 GHz, and its maximum gre is up to 6.1 dB. Finally, the PD detection performance of the antenna sensor is carried out on a real 220 kV GIS. The results show that, after being built in, the PD with a weak discharge magnitude of 4.5 pC can be effectively detected by the antenna sensor, and the antenna sensor has the ability to quantify the severity of PD. In addition, through the simulation, the antenna sensor has potential for the detection of micro water in GISs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call