Abstract
Postsurgical tissue adhesion formation caused by inflammation and oxidative stress is one of the serious issues because it induces severe clinical disorders. In this study, we designed redox injectable gel (RIG) which covalently possesses nitroxide radicals as a reactive oxygen species (ROS) scavenger for high performance anti-adhesion agent. The redox flower micelles exhibiting gelation under physiological conditions were prepared by a polyion complex (PIC) between polyamine-PEG-polyamine triblock copolymer possessing nitroxide radicals as a side chain of polyamine segments and poly(acrylic acid). RIG showed prolonged local retention in the abdominal cavity of the mice, which was monitored by in vivo imaging system (IVIS). Compared with a commercial anti-adhesion agent (Seprafilm®, Genzyme, Cambridge, MA), RIG dramatically inhibited the formation of tissue adhesions via a combination of physical separation and biological elimination of generated ROS in talc-induced adhesion model mice. Treatment with RIG suppressed inflammatory cytokines and neutrophil invasion, suppressing the increase in peritoneal membrane thickness. It is also emphasized that RIG suppressed the increase of white blood cells level, indicating that the present RIG treatment effectively prevents diffusion of local inflammation to entire body. These findings indicate that RIG has a great potential as a high performance anti-adhesion agent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.