Abstract

We propose a novel technique to design a high-channel-count, multichannel fiber Bragg grating (FBG) based on a largely chirped structure. The minimization of refractive-index modulation has been widely discussed in the previously demonstrated multichannel grating designs. The complexity of the grating structure, however, is also important from the point of view of practical fabrication. In this paper, the degree of grating complexity (DGC) is defined. We show that the DGC of a multichannel grating can be significantly reduced by designing a grating with a largely chirped structure. A detailed grating design process based on this technique is discussed, by which four multichannel gratings are designed and numerically studied, for applications such as periodic and nonperiodic spectral filtering, chromatic dispersion compensation and dispersion slope compensation. The proposed theory and examples show that different gratings with high-channel-count and multichannel responses can be designed and fabricated using a single commercially available phase mask, and all the gratings can be realized by a conventional FBG fabrication facility since the gratings have a low DGC with low index modulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.