Abstract

The means of structural hybridization such as heterojunction construction and carbon-coating engineering for facilitating charge transfer and electron transport are considered viable strategies to address the challenges associated with the low rate capability and poor cycling stability of sulfide-based anodes in potassium-ion batteries (PIBs). Motivated by these concepts, we have successfully prepared a hydrangea-like bimetallic sulfide heterostructure encapsulated in nitrogen-doped carbon (FMS@NC) using a simple solvothermal method, followed by poly-dopamine wrapping and a one-step sulfidation/carbonization process. When served as an anode for PIBs, this FMS@NC demonstrates a high specific capacity (585 mAh g−1 at 0.05 A/g) and long cycling stability. Synergetic effects of mitigated volume expansions and enhanced conductivity that are responsbile for such high performance have been verified to originate from the heterostructured sulfides and the N-doped carbon matrix. Meanwhile, comprehensive characterization reveals existence of an intercalation-conversion hybrid K-ion storage mechanism in this material. Impressively, a K-ion capacitor with the FMS@NC anode and a commercial activated carbon cathode exhibits a superior energy density of up to 192 Wh kg−1, a high power density, and outstanding cycling stability. This study provides constructive guidance for designing high-performance and durable potassium-ion storage anodes for next-generation energy storage devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call