Abstract

Constantly rising operating pressure and temperature in turbine drivers push the material capabilities of turbine blades to the limit. The recent development of heterogeneous objects by layered manufacturing offers new potentials for the turbine blades. In heterogeneous turbine blades, multiple materials can be synthesized to provide better properties than any single material. A critical task of such synthesis in turbine blade design is an effective design method that allows a designer to design geometry and material composition simultaneously. This paper presents a new approach for turbine blade design, which ties B-spline representation of a turbine blade to a physics (diffusion) process. In this approach, designers can control both geometry and material composition. Meanwhile, material properties are directly conceivable to the designers during the design process. The designer's role is enhanced from merely interpreting the optimization result to explicitly controlling both material composition and geometry according to the acquired experience (material property constraints). The mathematical formulation of the approach includes three steps: using B-spline to represent the turbine blade, using diffusion equation to generate material composition variation, using finite element method to solve the constrained diffusion equation. The implementation and examples are presented to validate the effectiveness of this approach for heterogeneous turbine blade design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call