Abstract

Heat integration of distillation columns offers a significant potential to reduce energy costs and carbon footprint in process plants. The conceptual design for heat integration is straightforward: candidate columns may be identified simply by evaluation of the vapor pressure curves of their top and bottoms products. Once the energy and cost savings potential is estimated, the easy part is over and the real fun for the designers begins. Successful implementation of heat integration will have a strong impact on the whole plant setup intensifying interactions between equipment design, plant layout, instrumentation, process control, and safety concept. In order to master this increased project complexity, the design team needs to begin to tackle these questions in early project stages and find sustainable solutions in the pre-basic engineering phase already.The paper outlines a useful methodology for the successful design of heat-integrated column systems. The guidelines provided help the practitioner to anticipate typical problems and pitfalls and to find practical solutions resulting in in cost-effective, reliable designs near the energy optimum. The methodology has been successfully applied in industrial practice and is demonstrated using a recent project as an example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.