Abstract

The design of halfband filters for orthonormal wavelet with a prescribed number of vanishing moment and prescribed ripple amplitudes is described. The technique is an extension of the zero-pinning (ZP) technique and is called ripple-pinning (RP). In ZP, the positions of stopband minima (of a Bernstein polynomial) are specified explicitly and the stopband maxima (position and amplitude) depend implicitly on the minima. In RP, the amplitude of the ripples is explicitly specified and this leads to a set of non-linear (polynomial) equations with the position of both the minima and maxima as unknowns. An iterative algorithm is proposed to solve the equations and design examples will be presented. Two variations of the RP technique, which allow for the transition band sharpness to be explicitly specified, are also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.