Abstract

Oesophageal cancer is a malignant tumor with high morbidity and mortality. Surgical treatment, radiotherapy, and chemotherapy are the most common treatment methods for oesophageal cancer. However, traditional chemotherapy drugs have poor targeting performance and cause serious adverse drug reactions. In this study, a GSH-sensitive material, ATRA-SS-HA, was developed and self-assembled with curcumin, a natural polyphenol antitumor drug, into nanomicelles Cur@ATRA-SS-HA. The micelles had a suitable particle size, excellent drug loading, encapsulation rate, stability, biocompatibility, and stable release behaviour. In the tumor microenvironment, GSH induced disulfide bond rupture in Cur@ATRA-SS-HA and promoted the release of curcumin, improving tumor targeting. Following GSH-induced release, the curcumin IC50 value was significantly lower than that of free curcumin and better than that of 5-FU. In vivo pharmacokinetic experiments showed that the drug-loaded nanomicelles exhibited better metabolic behaviour than free drugs, which greatly increased the blood concentration of curcumin and increased the half-life of the drug. The design of the nanomicelle provides a novel clinical treatment for oesophageal cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.