Abstract

AbstractBy exploiting the electroabsorption effect of graphene, we present a graphene-based polarization-insensitive optical modulator. The waveguide structure consists of a silica substrate, high-index silicon strip waveguide, Si3N4dielectric spacer, two graphene layers, and two metal electrodes. The modulator performance is comprehensively studied in terms of attenuation, insertion loss, modulation depth, and bandwidth. We achieve broadband >16 dB attenuation graphene-based optical modulator over a 35 nm wavelength range (covering C band) with an imbalance of no >1 dB and insertion loss of <2 dB for transverse magnetic and transverse electric polarized modes. Moreover, the electrical properties such as energy per bit consumption (Ebit) are also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.