Abstract
ABSTRACT Designing and manufacturing lattice structures with Topology Optimization (TO) and Additive Manufacturing (AM) techniques is a novel method to create light-weight components with promising potential and high design flexibility. This paper proposes a new design of lightweight-graded lattice structures to replace the internal solid volume of the turbine blade to increase its endurance of high thermal stresses effects. The microstructure design of unit cells in a 3D framework is conducted by using the lattice structure topology optimization (LSTO) technique. The role of the LSTO is to find an optimal density distribution of lattice structures in the design space under specific stress constraints and fill the inner solid part of the blade with graded lattice structures. The derived implicit surfaces modelling is used from a triply periodic minimal surfaces (TPMS) to optimize the mechanical performances of lattice structures. Numerical results show the validity of the proposed method. The effectiveness and robustness of the constructed models are analysed by using finite element analysis. The simulation results show that the graded lattice structures in the improved designs have better efficiency in terms of lightweight (33.41–40.32%), stress (25.52–48.55%) and deformation (7.35–19.58%) compared to the initial design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Integrated Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.