Abstract

Gold nanoparticles (AuNPs) exhibit great potential for biological applications due to their good biocompatibility and tunable localized surface plasmon resonance (LSPR) properties. Currently, although tuning the aspect ratio of a solid structure or designing a hollow structure has been performed to regulate the LSPR properties of AuNPs, the method of preparing hollow anisotropic AuNPs has rarely been reported. In this study, we designed gold hollow nanorods (AuHNRs) with controllable aspect ratios by a Se-doping Te nanorod-templated method with the assistance of l-cysteine. UV-vis-NIR spectra showed that AuHNRs with an aspect ratio of about 3 could have a LSPR peak in the second near-infrared (NIR-II) window, which is only half of the value required by traditional Au nanorods. Moreover, AuHNRs are nontoxic and capable of loading drugs. In vivo experiment revealed that AuHNRs can be used as contrast agents in multimodal imaging, including photothermal imaging, photoacoustic imaging, and computed tomography imaging, as well as in chemo-photothermal combined therapy of tumor in the NIR-II window. Because light in the NIR-II window has remarkable advantages over that in the first near-infrared (NIR-I) window in biomedical applications, AuHNRs can be used as promising NIR-II-window-responsive multifunctional nanoagents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.