Abstract

In this study, we introduce a new design methodology of fuzzy radial basis function-based polynomial neural networks. In many cases, these models do not come with capabilities to deal with granular information. With this regard, fuzzy sets offer several interesting and useful opportunities. This study presents the development of fuzzy radial basis function-based neural networks augmented with virtual input variables. The performance of the proposed category of models is quantified through a series of experiments, in which we use two machine learning data sets and two publicly available software development effort data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.