Abstract
To improve the motion detection performance of a bracelet-type sensor that uses only two tiny sensor modules developed using carbon-based conductive polymer composite films, a fuzzy-logic algorithm was developed in this study. A polyethylene terephthalate polymer film with a conductive layer composed of carbon paste was used as the integral material utilized for the composite film; a small sensor module composed of mechanical parts mounted on the film was developed to effectively detect the surface resistance variations of the film. A participant wore a bracelet sensor, which consisted of two sensor modules, on their forearm, and the resistance variations of the contact area between the forearm and the sensor modules corresponding to the flexion changes of the surface of the body due to muscle contraction and relaxation were detected. The surface resistance variations of the film were converted to voltage signals, which were used as inputs to the fuzzy logic algorithm to detect four consecutive motions of the forearm. The results demonstrated that the fuzzy-logic algorithm attained an accuracy of 94%. The fuzzy algorithm successfully detected four motions and the resting state of the forearms; moreover, it showed improved performance compared to previous research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.