Abstract

AbstractSoft interfaces formed by polymer materials are important interfaces for biological systems (biointerfaces), and controlling their chemical and physical structures at the nanoscale plays an important role in understanding the mechanism and development of interface functionalities. Controlled radical polymerization (CRP) is highly suited for designing biointerfaces composed of polymer chains because it enables the formation of well-defined polymer brushes, block copolymers, and comb-type copolymers. This focus review describes the design of functional soft interfaces based on investigations of the structure-property relationships of CRPs. In particular, polymer brush surfaces showing autonomous property changes, 2D/3D transformations of lipid bilayers, and molecular interactions in bactericidal cationic polymer brushes are depicted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call