Abstract

AbstractIn this study, a methodology to design frame-like periodic solids for isotropic symmetry by appropriate sizing of unit-cell struts is presented. The methodology utilizes the closed-form effective elastic constants of 2D frame-like periodic solids with square symmetry and 3D frame-like periodic solids with cubic symmetry, derived using the homogenization method based on equivalent strain energy. By using the closed-form effective elastic constants, an equation to enforce isotropic symmetry can be analytically constructed. Thereafter, the equation can be used to determine relative unit-cell strut sizes that are required for isotropic symmetry. The methodology is tested with 2D and 3D frame-like periodic solids with some common unit-cell topologies. Satisfactory results are observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.