Abstract

This paper is devoted to the problem of designing an H2 (H∞)-based optimal sparse static output feedback (SOF) controller for continuous linear time invariant systems. Incorporating an extra term for penalising the number of non-zero entries of the static output (state) feedback gain into the optimisation objective function, we propose an explicit scheme and an iterative process in order to identify the desired sparse structure of the feedback gain. In doing so, the so-called reweighted ℓ1-norm, which is known as a convex relaxation of the ℓ0-norm, is exploited to make a convex problem through an iterative process rather than the original NP-hard problem. This paper will also show that this problem reformulation allows us to incorporate additional constraints, such as regional pole placement constraints which provide more control over the satisfactory transient behavior and closed-loop pole location, into the designing problem. Then using the obtained structural constraints, we solve the structural H2 (H∞) SOF problem. Illustrative examples are presented to show the effectiveness of the proposed approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.