Abstract

To overcome some of the problems inherent in conventional hearing aids such as low gain at high frequencies due to acoustic feedback, discomfort in occlusion of the external ear canal and so on, implantable middle ear hearing devices (IMEHDs) have been developed over the past two decades. For such kinds of IMEHDs, this paper presents the design of a floating mass piezoelectric actuator using a PMN-30%PT stack as a new type of vibrator. The proposed piezoelectric actuator consists of only three components of a piezoelectric stack, a metal case and a clamp. For the purpose of aiding the design of this actuator, a coupling biomechanics model of human middle ear and the piezoelectric actuator was constructed. This model was built based on a complete set of computerized tomography section images of a healthy volunteer’s left ear by reverse engineering technology. The validity of this model was confirmed by comparing the motion of the tympanic membrane and stapes footplate obtained by this model with published experimental measurements on human temporal bones. It is shown that the designed actuator can be implanted on the incus long process by a simple surgical operation, and the stapes footplate displacement by its excitation at 10.5 V root-mean-square(RMS) voltage was equivalent to that from acoustic stimulation at 100 dB sound pressure level(SPL), which is adequate stimulation to the ossicular chain. The corresponding power consumption is 0.04 mW per volt of excitation at 1 kHz, which is low enough for the transducer to be used in an implantable middle ear device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.