Abstract
Flexible thermoelectric generator (TEG) became an attractive technology that has been widely used especially for curved surfaces applications. This study aims an optimal design of a flexible TEG for human body application. The flexible TEG is part of a sensor and supplies required electrical power for data transmission by the sensor. The TEG module includes ink based thermoelements made of nano-carbon bismuth telluride materials. One flexible fin conducts the body heat to the TEG module and there are two fins that exchange the heat from the cold side of the TEG to the ambient. The proposed design is supposed to produce 10 μV to feed the used sensor in the thermoelectric system. In this design, the effect of heat transfer coefficient due to natural convection on the power generation is studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.