Abstract

Abstract In this paper we develop an optimal and a heuristic algorithm for the problem of designing a flexible assembly line when several equipment alternatives are available. The design problem addresses the questions of selecting the equipment and assigning tasks to workstations, when precedence constraints exist among tasks. The objective is to minimize total equipment costs, given a predetermined cycle time (derived from the required production rate). We develop an exact branch and bound algorithm which is capable of solving practical problems of moderate size. The algorithm's efficiency is enhanced due to the development of good lower bounds, as well as the use of some dominance rules to reduce the size of the branch and bound tree. We also suggest the use of a branch-and-bound-based heuristic procedure for large problems, and analyze the design and performance of this heuristic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.