Abstract

In this work, four structurally similar flavonols (galangin, kaempferol, quercetin and myricetin) were coated on the surface of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide (MUTAB)‑gold nanoparticles (AuNPs) by two-step phase transfer and self-assembly, and the cationic MUTAB- AuNPs coated with flavonols (flavonol-MUTAB-AuNPs) were designed. Free radical scavenging and antibacterial experiments show that flavonol-MUTAB-AuNPs greatly improve the scavenging effect on DPPH, hydroxyl and superoxide anion radicals, and significantly enhance the inhibition effect on Staphylococcus aureus and Escherichia coli compared with flavonols and AuNPs. Then γ-globulin, fibrinogen, trypsin and pepsin were selected as representative proteins and their interaction with flavonol-MUTAB-AuNPs were investigated by various spectroscopic techniques. The fluorescence quenching mechanism of these four proteins by flavonol-MUTAB-AuNPs is static quenching. The binding constants Ka between them are in the range of 103 to 106. The interaction between them is endothermic, entropy-driven spontaneous process, and the main non-covalent force is the hydrophobic interaction. The effect of flavonol-MUTAB-AuNPs on the structure of the four proteins were investigated using UV–vis absorption spectra, synchronous fluorescence spectra and circular dichroism spectra. These results offer important insights into the essence of the interaction between flavonol-MUTAB-AuNPs and γ-globulin/fibrinogen/trypsin/pepsin. They will contribute to the development of safe and effective flavonol-MUTAB-AuNPs in biomedical fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.