Abstract

Clonal selection algorithms (CSAs) is a special class of immune algorithms (IA), inspired by the clonal selection principle of the human immune system. To improve the algorithm′s ability to perform better, this CSA has been modified by implementing two new concepts called fixed mutation factor and ladder mutation factor. Fixed mutation factor maintains a constant factor throughout the process, where as ladder mutation factor changes adaptively based on the affinity of antibodies. This paper compared the conventional CLONALG, with the two proposed approaches and tested on several standard benchmark functions. Experimental results empirically show that the proposed methods ladder mutation‐based clonal selection algorithm (LMCSA) and fixed mutation clonal selection algorithm (FMCSA) significantly outperform the existing CLONALG method in terms of quality of the solution, convergence speed, and solution stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.